extension on regularity condition in dea models

نویسندگان

f. rezai balf

r. shahverdi

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note On Dual Models Of Interval DEA and Its Extension To Interval Data‎‎

In this article, we investigate the measurement of performance in DMUs in which input and/or output values are given as imprecise data. By imprecise data, we mean that in some cases, we only know that the actual values are inside certain intervals, and in other cases, data are specified only as ordinal preference information. In this article, we present two distinct perspectives for determining...

متن کامل

Extension of Linear Isotherm Regularity to Long Chain Alkanes

In this work, we consider each normal alkane as a hypothetical mixtureof methyland methylene groups, in which the interaction potential of each pair is assumed to be the average effective pair potential. Then, the LIR equation of state (EOS) is extended for such a hypothetical mixture. Also, three basic compounds, namely, propane, n-butane and cyclohexane, are used to obtain the contributio...

متن کامل

EXTENSION OF LINEAR ISOTHERM REGULARITY TO LOWER DENSITY RANGE

The general equation of state which was found for dense fluids, both compressed liquids and dense supercritical fluids, namely "Linear Isotherm Regularity," is extended to the lower density range, specifically for densities lower than the Boyle density. This new equation of state which is called "ELIR" is shown to be compatible with the equations of state based on statistical-mechanical the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of industrial mathematics

ناشر: science and research branch, islamic azad university, tehran, iran

ISSN 2008-5621

دوره 1

شماره 3 2009

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023